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Abstract—This paper demonstrates that robust control based on only a priori information about
the object’s uncertainty can be significantly improved through the additional use of experimental
data. Generalized H∞-optimal controllers are designed for an unknown linear time-varying
system on a finite horizon. These controllers optimize the damping level of exogenous and/or
initial disturbances as well as the maximum deviation of the terminal state of the system. The
design method does not require the persistent excitation condition or the rank condition, which
ensure the identifiability of the system. As a result, the amount of experimental data can be
significantly reduced.
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1. INTRODUCTION

Currently, control theoreticians are actively developing robust control design methods using
preliminary experimental data. Traditional methods mainly involve a priori information. Exper-
imental data significantly narrow the set of objects consistent with a priori information, which
ultimately yields better controllers. For systems with parametric uncertainty, a large place is oc-
cupied by robust control design methods based on the theory of H∞-optimal control; for example,
see the review [1]. The main idea underlying these methods is that an original uncertain system
is represented as two subsystems connected via a feedback loop: one subsystem is known, and the
other contains a matrix of unknown object parameters. In the literature, such a model is called
the linear fractional transformation (LFT) model. The additional input and output of the known
subsystem, specifying the output and input of the unknown subsystem, respectively, are called the
input and output of the uncertainty. If a priori information is expressed by a quadratic inequality
with respect to the unknown parameter matrix, then the input and output of the uncertainty sat-
isfy the corresponding quadratic inequality. Thus, the original system with parametric uncertainty
is “immersed” in the known system containing an additional disturbance from a given class; the
latter system will be called augmented. As a result, the corresponding minimax controller for the
augmented system under exogenous and additional disturbances is selected as a robust controller
minimizing a given performance index.
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HOW TO IMPROVE ROBUST CONTROL 637

Controller design based on experimental data assumes that object disturbances or measurement
noises during experiments belong to some class and have certain bounds. Under this assumption,
one can judge the domain of uncertain object parameters that could generate the received data.
However, direct application of the robust control design approach described above has turned out
to be difficult: the inequality obtained using experimental data is quadratic with respect to the
transposed unknown parameter matrix. As will be shown below, this obstacle can be eliminated
by passing from the original (primal) uncertain system to the dual one and characterizing the
performance index in terms of the dual system.

New approaches have emerged in response to this difficulty. For linear time-invariant systems
without disturbances and measurement noises, robust controllers were designed by parameterizing
the set of all closed-loop system matrices consistent with experimental data in terms of these
data [2]. This approach was extended to systems with disturbance [3] and linear time-varying
systems with disturbance [4]. The necessary and sufficient conditions for robust stabilization were
established based on Petersen’s lemma [6] in [5]. For sufficiently small amplitudes of disturbances,
robust H2 controllers using experimental data can be improved by compromising between the goals
of control and identification through performance index regularization; for details, see [7].

Certain requirements were imposed on experimental data in the cited works: for time-invariant
systems, the matrix composed of state and control measurements along the system trajectory must
be of maximum row rank; for time-varying systems, the matrices composed of state and control
measurements in several experiments must also have a maximum row rank at each time instant. To
fulfill this rank condition, the input signals in the experiments must ensure a persistent excitation
in the system; in the case of time-varying systems, in addition, sufficiently many experiments must
be conducted to identify the unknown parameters.

For linear time-invariant systems, necessary and sufficient conditions for the existence of a sin-
gle linear state-feedback controller for all objects consistent with experimental data were derived
in [8, 9]. These conditions were obtained using the matrix version of the S-lemma [10] and expressed
in terms of linear matrix inequalities (LMIs), depending only on experimental data. According to
the results of mathematical modeling, including those presented in [9], even with relatively small
amplitudes of measurement noises, the LMIs give a rather rough estimate for the corresponding
performance index of the system or even turn out to be infeasible (unsolvable). The reason is that
the set of objects consistent with experimental data expands significantly when increasing the noise
amplitude. Although the persistent excitation condition is not formally required to ensure data
informativeness, the specified set can become unbounded even under small noise amplitudes if the
rank condition fails for the experimental data. Thus, robust control design based on only exper-
imental data, as well as robust control design using only a priori information, has its advantages
and drawbacks. Therefore, it seems natural to combine these approaches, even if the results may
be conservative.

The first attempt in this direction was undertaken in [11]; for linear time-invariant systems and
some classes of nonlinear systems, the state feedback parameters were found by jointly using a
priori information and experimental data based on the theory of full block scalings [12]. Time-
invariant systems on an infinite horizon were considered in [13, 14]; it was shown that traditional
robust control design methods based on the theory of H∞-optimization with a priori information
can be applied to design a generalized H∞-optimal controller using experimental data jointly with
a priori information by passing from the primal system to the dual one. For this purpose, it is
necessary to characterize the generalized H∞ norm in terms of the quadratic Lyapunov function of
the dual system, represent the equations of the dual uncertain system as an LFT model with the
corresponding inequalities for the input and output of the uncertainty, and select as the desired
robust controller the generalized H∞-optimal controller to attenuate the exogenous and additional
disturbances in the known subsystem of this model.
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Below, we extend this idea to the analysis and design of optimal controllers for completely
uncertain time-varying systems on a finite horizon. The goals of control are to minimize the damping
levels of exogenous and/or initial disturbances, measured by the worst-case values of the ratios of
state- and control-quadratic functionals to the “energy” of the corresponding disturbances, as well
as the maximum deviation of the terminal state, measured by the worst-case value of the ratio of
the quadratic form of the terminal state to the energy of the disturbances. All these performance
indices are expressed in terms of the generalized H∞ norm of the linear time-varying system on a
finite horizon. In contrast to [4], the rank condition is not required here, which significantly reduces
the amount of experimental data. Using the Mathieu equation as an example, we demonstrate that
a robust controller can be designed for a time-varying system even when measuring one trajectory
on a finite horizon. This is achieved through the joint use of experimental data and a priori
information, where the latter plays a regularizing role in the cases of singular information matrices
(when the system turns out to be unidentifiable).

2. PROBLEM STATEMENT

2.1. Experimental Data

Consider an uncertain system described by

x(t+ 1) = Atx(t) +Btu(t) + w(t), x(0) = x0,

z(t) = Ctx(t) +Dtu(t), t = 0, . . . , N − 1,
(2.1)

where x(t)∈Rnx is the state vector, u(t)∈Rnu is the control vector (input), w(t)∈Rnx is an
unmeasurable disturbance, and z(t)∈Rnz is the performance output. By assumption, the initial
state x0 and the system matrices At, Bt, Ct and Dt are unknown. In general, it is required to design
linear state-feedback controllers based on a priori information jointly with experimental data that
optimize different performance indices of the closed loop system: the damping level of the initial
and/or exogenous disturbances on a finite horizon and an infinite horizon for time-invariant systems,
the maximum deviation of the terminal state, and others.

The information about the unknown matrices of system (2.1) is extracted from a finite set of
measurements of its trajectory at time instants t = 0, . . . , N in the course of L > 1 experiments.
Suppose that in experiment l, there are available measurements of the state and performance
output, x0, l, x1, l, . . . , xN, l and z0, 1, . . . , zN−1, l, respectively, under chosen controls u0, l, . . . , uN−1, l

and some unknown disturbances w0, l, . . . , wN−1, l. For each t = 0, . . . , N, we compile the matrices

Φt = (xt, 1 · · · xt, L) , Ut = (ut, 1 · · · ut, L) ,

Wt = (wt, 1 · · ·wt, L) , Zt = (zt, 1 · · · zt, L) ,
(2.2)

which contain all experimental data at each time instant. Due to the object’s equation, these
matrices satisfy the relation

Φt+1 = A
(real)
t Φt +B

(real)
t Ut +Wt,

Zt = C
(real)
t Φt +D

(real)
t Ut,

(2.3)

where A
(real)
t , B

(real)
t , C

(real)
t , and D

(real)
t are the real (unknown) system matrices. With the

notations

∆
(real)
t =


A

(real)
t B

(real)
t

C
(real)
t D

(real)
t


, Φ̂t =

(
Φt

Ut

)
, Φ̃t+1 =

(
Φt+1

Zt

)
, Ŵt =

(
Wt

0

)
,

equations (2.3) can be written as the linear matrix regression

Φ̃t+1 = ∆
(real)
t Φ̂t + Ŵt, t = 0, . . . , N − 1. (2.4)
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Assume that the disturbance in the experiments satisfies the condition
∑L

l=1wt, lw
T
t, l =

WtW
T
t 6 Ωt, i.e.,

ŴtŴ
T
t 6

(
Ωt ⋆

0 0

)
= Ω̂t. (2.5)

In particular, if
∑L

l=1 |wt, l|
2 6 α2

t , then Ωt = α2
t I. If ‖w(t)‖∞ 6 dw for all t and a given value dw

(the disturbance level), then Ωt = d2wnxLI.

Remark 1. If the disturbance in (2.1) has the form w(t) = Bv, tv(t), where v(t) ∈ Rnv and
‖v(t)‖∞ 6 dv, then Ωt = d2vnvLBv, tB

T
v, t.

Due to (2.5), the matrices ∆t of dimensions (nx + nz)× (nx + nu) that could generate the
experimental matrices Φt and Zt under the chosen controls Ut and some admissible matrices Ŵt

satisfying the constraint (2.5) are characterized by the inequalities

(Φ̃t+1 −∆tΦ̂t)(Φ̃t+1 −∆tΦ̂t)
T
6 Ω̂t, t = 0, . . . , N − 1. (2.6)

We represent these inequalities as

(∆t Inx+nz)Ψ
(1)(t) (∆t Inx+nz)

T
6 0, t = 0, . . . , N − 1, (2.7)

where the symmetric matrices Ψ(1)(t) of dimensions (2nx+nu+nz)×(2nx+nu+nz) are partitioned

into appropriate blocks Ψ
(1)
ij (t), i, j = 1, 2, as follows:

Ψ(1)(t) =




Φ̂tΦ̂
T
t | ⋆

−−− −−− −−−

−Φ̃t+1Φ̂
T
t | Φ̃t+1Φ̃

T
t+1 − Ω̂t


 . (2.8)

Let ∆
(p)
t denote the set of matrices ∆t consistent with the experimental data, i.e., those satisfying

inequality (2.7) for the given time instant t.

Generally speaking, the set ∆
(p)
t is unbounded. To establish its boundedness conditions, we

denote by Im(·), Ker(·), span(·), and rank(·) the image, kernel, linear column subspace, and column
rank of an appropriate matrix, respectively. Under the assumption rank Φ̂t = s 6 min{nx+nu, L},
the matrix Φ̂t admits the singular decomposition [15]

Φ̂t = (F1 F2)

(
Σ 0s×(L−s)

0(nx+nu)×s 0(nx+nu)×(L−s)

)(
GT

1

GT
2

)
= F1ΣG

T
1 ,

F1 ∈ R(nx+nu)×s, F2 ∈ R(nx+nu)×(nx+nu−s), F = (F1 F2) , FTF = I,

(2.9)

where Σ = diag (λ1, . . . , λs) > 0, λi are the eigenvalues of the information matrix Φ̂tΦ̂
T
t , spanF1 =

Im Φ̂t, spanF2 = Ker Φ̂T
t , spanG1 = ImΦ̂T

t , and spanG2 = Ker Φ̂t. Choosing the orthonormal basis
of the columns of the matrix F, we introduce the corresponding variables

∆̂t = ∆t (F1 F2) =
(
∆̂

(1)
t ∆̂

(2)
t

)
, ∆̂

(1)
t ∈ Rnx×s, ∆̂

(2)
t ∈ Rnx×(nx+nu+ny−s)

and denote Φ̂
(1)
t = FT

1 Φ̂t. In the new variables, the linear matrix regression (2.4) takes the form

Φ̃t+1 = ∆̂
(real)(1)
t Φ̂

(1)
t + Ŵt, t = 0, . . . , N − 1, (2.10)

where the matrix Φ̂
(1)
t = ΣGT

1 of dimensions (s × L) has a full row rank, and ∆̂
(real)(1)
t is the

“projection” of the matrix ∆̂
(real)
t into the subspace Im Φ̂t, i.e., its rows are the projections of the

rows of the matrix ∆̂
(real)
t into the subspace Im Φ̂t.
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Lemma 2.1. The set ∆
(p)
t of all matrices consistent with the experimental data Φ̂t = col (Φt, Ut)

that satisfy (2.9) is an unbounded degenerate “matrix ellipsoid” given by

(∆̂
(1)
t − ∆̂

(LS)(1)
t )Σ2(∆̂

(1)
t − ∆̂

(LS)(1)
t )T 6 Ω̂t, (2.11)

where ∆̂
(LS)(1)
t = Φ̃t+1Φ̂

(1)T
t Σ−2 is the least-squares estimate of the matrix ∆̂

(real)(1)
t in (2.10).

Corollary 2.1. The set ∆
(p)
t is bounded iff the rank condition

rank

(
Φt

Ut

)
= nx + nu (2.12)

holds. In this case, the set ∆
(p)
t consists of the matrices given by inequality (2.11) in which ∆̂

(1)
t =

∆̂t and ∆̂
(LS)(1)
t = ∆̂

(LS)
t .

The proofs of all lemmas, including Lemma 2.1, are provided in the Appendix. By this lemma,

in the general case, only the projection ∆̂
(real)(1)
t of the unknown matrix into the subspace Im Φ̂t

can be identified from the obtained data. Under the rank condition (2.12), the matrix ∆
(real)
t

in (2.4) is identifiable, and the matrix ellipsoid (as well as the set ∆
(p)
t ) are bounded. Note that

the rank condition (2.12) holds only if the number of measurements is not smaller than the sum
of the dimensions of the state and control vectors: N > nx + nu. In contrast to [4], the robust
control design procedure proposed here does not require the rank condition, and the number of
experiments can therefore be less than nx + nu. As will be shown below, including an illustrative
example, if the rank condition fails (accordingly, the information matrix becomes singular), the
uncertainty domain is bounded due to using a priori information.

Remark 2. If the unknown time-varying system (2.1) is periodic with a given period T, then the
experimental data matrices can be formed by measuring one trajectory on the interval [0, LT ]. To
do this, for t = 0, . . . , T, we introduce the matrices

Φt =
(
xt xT+t · · · x(L−1)T+t

)
, Ut =

(
ut uT+t · · · u(L−1)T+t

)
,

Wt =
(
wt wT+t · · ·w(L−1)T+t

)
, Zt =

(
zt zT+t · · · z(L−1)T+t

)

and obtain the equations similar to (2.4) and, accordingly, the inequalities similar to (2.7) for
t = 0, . . . , T − 1.

Remark 3. Consider the unknown time-invariant system (2.1), for which, in particular, only one
experiment can be conducted (L = 1). For this system, from the matrices (2.2) we compile the
matrices

Φ[0,N−1] = (Φ0 . . .ΦN−1) , Φ[1,N ] = (Φ1 . . .ΦN) ,

U[0,N−1] = (U0 . . . UN−1) , Z[0,N−1] = (Z0 . . . ZN−1) ,

W[0,N−1] = (W0 . . . WN−1) .

In this case, the equation Φ̃ = ∆(real)Φ̂ + Ŵ is valid, where

Φ̂ =

(
Φ[0,N−1]

U[0,N−1]

)
, Φ̃ =

(
Φ[1,N ]

Z[0,N−1]

)
, Ŵ =

(
W[0,N−1]

0

)
.

By analogy, we arrive at inequality (2.7) with the time-invariant matrix Ψ(1) with respect to the
unknown parameter matrix ∆.
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2.2. A Priori Information

Following conventional robust control methods, let there exist an additional information that

the unknown matrices ∆
(real)
t , t = 0, . . . , N − 1, satisfy the constraints

(∆t −∆∗
t )(∆t −∆∗

t )
T
6 ρ2t I, ∆∗

t =

(
A∗

t B∗
t

C∗
t D∗

t

)
, (2.13)

where ∆∗
t and ρt are given matrices and scalar parameters characterizing the centers and radii of

the matrix spheres. We write this inequality as

(∆t I)Ψ(2)(t) (∆t I)T 6 0, (2.14)

where the matrix Ψ(2)(t) consists of the blocks Ψ
(2)
ij (t), i, j = 1, 2, and has the form

Ψ(2)(t) =




I | ⋆

−−− −−− −−−
−∆∗

t | ∆∗
t∆

∗T
t − ρ2t I


 . (2.15)

We introduce the following notations: ∆
(a)
t is the set of matrices ∆t satisfying inequality (2.14) for

a given time instant t, and ∆t = ∆
(p)
t

⋂
∆

(a)
t is the set of matrices ∆t satisfying inequalities (2.7)

and (2.14). Thus, ∆t is the set of all matrices ∆t consistent both with the experimental data and

with the a priori information for a given time instant t. Obviously, ∆
(real)
t ∈ ∆t. Figure 1 illustrates

a possible arrangement of the sets ∆
(p)
t and ∆

(a)
t and their intersection ∆t.

Δ
(LS)

Δ

(real)

(p)
t

t

Δ t

Δ

Δt

Δ
*
t

t

(a)

Fig. 1. The sets ∆
(p)
t , ∆

(a)
t , and ∆t of all matrices consistent only with experimental data, only with a priori

information, and both with experimental data and with a priori information, respectively.

Let ∆
(p)
[0,N−1] =

(
∆

(p)
0 , . . . ,∆

(p)
N−1

)
, ∆

(a)
[0,N−1] =

(
∆

(a)
0 , . . . ,∆

(a)
N−1

)
, ∆[0,N−1] = (∆0, . . . ,∆N−1)

denote the set of matrices ∆[0,N−1] = (∆0, . . . ,∆N−1) consistent only with the experimental data,
only with the a priori information, and both with the experimental data and with the a priori
information, respectively, for all time instants t = 0, . . . , N − 1.

2.3. The Goals of Control

The performance of the closed-loop uncertain system (2.1) with the linear time-varying state-
feedback controller u(t) = Θtx(t) will be evaluated by the maximum damping level of the initial
and exogenous disturbances, i.e., the upper bound of the generalized H∞ norm of the closed loop
system under all system matrices consistent both with the experimental data and with the a priori
information:

γg∞(Θ[0,N−1];R,S) = sup
∆[0,N−1]∈∆[0,N−1]

sup
x0, w

(
‖z‖2[0, N−1] + xT(N)Sx(N)

xT0 R
−1x0 + ‖w‖2[0, N−1]

)1/2

, (2.16)
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642 KOGAN, STEPANOV

where R = RT > 0 and S = ST > 0 are weight matrices of the initial and terminal states, respec-
tively, and ‖ξ‖2[0, t] =

∑t
i=0 |ξ(i)|

2. This index can be explained as follows. The system state at the
current time instant linearly depends on the initial conditions and disturbances, and their increase
leads to a corresponding increase in the state variables. To characterize the system dynamics un-
der the uncertain initial conditions and disturbances, we normalize the corresponding functional
by the sum indicated in the denominator. (For the linear system, this is equivalent to limiting the
sum to unity.) For the time-invariant system on an infinite horizon, one should let S = 0, N = ∞,

and ∆ ∈ ∆ in (2.16), where ∆ is the set of all unknown system matrices consistent both with the
experimental data and with the a priori information.

If the initial disturbance vanishes, the generalized H∞ norm turns into the standard H∞ norm

γ∞(Θ[0,N−1];S) = sup
∆[0,N−1]∈∆[0,N−1]

sup
w 6≡0

(
‖z‖2[0, N−1] + xT(N)Sx(N)

)1/2

‖w‖[0, N−1]
, (2.17)

which corresponds to R → 0 in the generalized H∞ norm (2.16). If w(t) ≡ 0 (no exogenous distur-
bance), the index (2.16) becomes the γ0 norm

γ0(Θ[0,N−1];R,S) = sup
∆[0,N−1]∈∆[0,N−1]

sup
x0 6=0

(
‖z‖2[0, N−1) + xT(N)Sx(N)

xT0 R
−1x0

)1/2

. (2.18)

This norm characterizes the maximum value of the quadratic functional on the system trajectories
provided that the initial state is inside the ellipsoid xTR−1x 6 1. If Ct ≡ 0 and Dt ≡ 0 in equa-
tion (2.1), we obtain the upper bound for the maximum deviation of the terminal state of the
closed-loop uncertain system:

γN (Θ[0,N−1];R,S) = sup
∆[0,N−1]∈∆[0,N−1]

sup
x0, w

(
xT(N)Sx(N)

xT0 R
−1x0 + ‖w‖2[0, N−1]

)1/2

. (2.19)

In the remainder of this paper, whenever no confusion occurs, the weight matrices will be omitted
as arguments for the norms under consideration.

The problem is to design, without having or constructing a mathematical model of the system,
a controller under which one of the performance indices listed above will be bounded by a given
constant, i.e., γg∞(Θ[0,N−1]) 6 γ in the general case.

3. ANALYSIS OF THE PRIMAL SYSTEM BASED ON A LYAPUNOV FUNCTION
FOR THE DUAL SYSTEM

For a given system

x(t+ 1) = Atx(t) + Btv(t), x(0) = x0,

z(t) = Ctx(t) +Dtv(t), t = 0, . . . , N − 1,
(3.1)

the generalized H∞ norm with weight matrices R > 0 and S > 0 of the initial and terminal states,
respectively, is the maximum value of the square root of the fractional expression with the sum of
the squared l2 norm of the output and a quadratic form of the terminal state as the numerator and
the sum of a quadratic form of the initial state and the squared l2 norm of the disturbance as the
denominator:

‖H‖g∞(R,S) = sup
x0, v

(
‖z‖2[0, N−1] + xT(N)Sx(N)

xT0 R
−1x0 + ‖v‖2[0, N−1]

)1/2

, (3.2)
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HOW TO IMPROVE ROBUST CONTROL 643

where the supremum is taken over all initial states x(0) = x0 and all disturbances v ∈ l2 that do
not vanish simultaneously.

As is known, the generalized H∞ norm on a finite interval can be characterized in Lyapunov
function terms and calculated using LMIs.

Lemma 3.1 [16]. The generalized H∞ norm (3.2) of system (3.1) satisfies the condition

‖H‖g∞(R,S) 6 γ iff the inequalities

Vt+1(x(t+ 1)) − Vt(x(t)) + |z(t)|2 − γ2|v(t)|2 6 0 (3.3)

are valid for the increment of a function Vt(x) = xTXtx with Xt = XT
t > 0, X0 6 γ2R−1, and

XN = S along the system trajectories for all t ∈ [0, N − 1].

Remark 4. For the standard H∞ norm, the conditions in Lemma 3.1 exclude the inequality
X0 6 γ2R−1; for the γ0 norm and the maximum deviation of the terminal state, inequality (3.3)
excludes the terms γ2|v(t)|2 and |z(t)|2, respectively.

Now we formulate two lemmas linking the generalized H∞ norms of the primal and dual systems.
They are proved in the Appendix. Recall that the generalized H∞ norm is an induced norm of a
linear operator generated by system (3.1) that maps a pair (x0, v(t)) ∈ Rnx × l2 = Ξ1 (the initial
state and the input disturbance) into a pair (x(N), z(t)) ∈ Rnx × l2 = Ξ2 (the terminal state and
the performance output), i.e., ‖H‖g∞ = ‖Γg∞‖, where

Γg∞ : Ξ1 = Rnx × l2[0, N − 1] → Ξ2 = Rnx × l2[0, N − 1] : (x0, v) → (x(N), z).

The inner products in these spaces are defined by

〈·, ·〉Ξ1 = xT1 (0)R
−1x2(0) + 〈v1(t), v2(t)〉l2 ,

〈·, ·〉Ξ2 = xT1 (N)Sx2(N) + 〈z1(t), z2(t)〉l2 .

Lemma 3.2. The adjoint operator Γ∗
g∞ and its norm are given by

Γ∗
g∞ : Ξ2 → Ξ1 : (S

−1x̂(N), v̂(t)) → (Rx̂(0), ẑ(t)),

‖Γ∗
g∞‖ = sup

x̂(N), v̂

[
‖ẑ‖2[0, N−1] + x̂T(0)Rx̂(0)

x̂T(N)S−1x̂(N) + ‖v̂‖2[0, N−1]

]1/2
, (3.4)

where x̂(t) and ẑ(t) satisfy the equations

x̂(t) = AT
t x̂(t+ 1) + CT

t v̂(t),

ẑ(t) = BT
t x̂(t+ 1) +DT

t v̂(t), t = 0, . . . , N − 1.
(3.5)

Lemma 3.3. The generalized H∞ norm with weight matrices R and S of the initial and terminal

states, respectively, of the primal system (3.1) coincides with the generalized H∞ norm with the

weight matrices S and R of the initial and terminal states, respectively, of the dual system

xd(t+ 1) = AT
N−1−txd(t) + CT

N−1−tvd(t),

zd(t) = BT
N−1−txd(t) +DT

N−1−tvd(t), t = 0, . . . , N − 1.
(3.6)

In other words,

sup
x0, v

(
‖z‖2[0, N−1] + xT(N)Sx(N)

xT0 R
−1x0 + ‖v‖2[0, N−1]

)1/2

= sup
xd(0), vd

[
‖zd‖

2
[0, N−1] + xTd (N)Rxd(N)

xTd (0)S
−1xd(0) + ‖vd‖

2
[0, N−1]

]1/2
. (3.7)
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Corollary 3.1. The maximum deviation γN (R,S) of the terminal state of the primal system (3.1)
coincides with the γ0(S,R) norm of the dual system (3.6) in which Ct ≡ 0 and Dt ≡ 0. In other

words,

sup
x0, v

(
xT(N)Sx(N)

xT0 R
−1x0 + ‖v‖2[0, N−1]

)1/2

= sup
xd(0)6=0

(
‖zd‖

2
[0, N−1] + xTd (N)Rxd(N)

xTd (0)S
−1xd(0)

)1/2

, (3.8)

and γ0(R,S) = γ
(d)
N (S,R). The standard H∞ norm of system (3.1) is expressed in terms of the dual

system (3.6) as follows:

sup
x0=0, v 6≡0

(
‖z‖2[0, N−1) + xT(N)Sx(N)

)1/2

‖v‖[0, N−1]
= sup

xd(0), vd

‖zd‖[0, N−1]
(
xTd (0)S

−1xd(0) + ‖vd‖
2
[0, N−1]

)1/2 .

According to Lemma 3.3, the generalized H∞ norms of the primal and dual systems are equal.
Using Lemma 3.1 for the norm ‖H(d)‖g∞(S,R) of the dual system (3.6), we arrive at the following
characterization of the generalized H∞ norm of the primal system.

Theorem 3.1. For system (3.1), ‖H‖g∞(R,S) 6 γ iff there exists a function V̂t(xd) = xTd Ptxd
with Pt > 0, P0 6 γ2S−1, and PN = R whose increment along the trajectory of the dual system (3.6)
satisfies the inequalities

V̂t+1(xd(t+ 1))− V̂t(xd(t)) + |zd(t)|
2 − γ2|vd(t)|

2
6 0 (3.9)

for all t = 0, . . . , N − 1.

Remark 5. In the similar characterization of the γ0 norm and the maximum deviation of the
terminal state, inequality (3.9) excludes the terms |zd(t)|

2 and γ2|vd(t)|
2, respectively; for the H∞

norm, one should let R = 0 under the hypotheses of Theorem 3.1 (see Remark 4).

Remark 6. Writing inequalities (3.9) for the quadratic forms in the matrix representation, we
obtain the LMIs




−Pt+1 ⋆ ⋆ ⋆

AN−1−tPt+1 −Pt ⋆ ⋆

CN−1−tPt+1 0 −γ2I ⋆

0 BT
N−1−t DT

N−1−t −I




6 0,

P0 6 γ2S−1, PN = R, t = 0, . . . , N − 1,

(3.10)

with respect to the matrices Pt. They are solvable iff ‖H‖g∞(R,S) 6 γ.

Remark 7. The matrices of the functions Vt(x) = xTXtx and V̂t(xd) = xTd Ptxd of the primal
and dual systems, respectively, are related by Pt = γ2X−1

N−t. This fact can be verified as follows.

First, introduce the change of variables Pt = γ2X−1
N−t in inequalities (3.10); second, establish in a

straightforward way that the function V (x) = xTXtx satisfies inequality (3.3) along the trajectories
of system (3.1).

Remark 8. For the time-invariant system, all the Lyapunov functions considered above have con-
stant matrices whereas the matrix P > R satisfies the stationary counterpart of the first inequality
in (3.10); for details, see [16].
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4. CONTROLLER DESIGN FOR THE UNCERTAIN SYSTEM

4.1. Generalized H∞ Control on a Finite Horizon

We describe the main steps for obtaining, from experimental data and a priori information, the
upper bound of the generalized H∞ norm with weight matrices R and S and the corresponding
controller parameters Θt for the uncertain system (2.1). The closed-loop system equations have
the form

x(t+ 1) = (At +BtΘt)x(t) + w(t),

z(t) = (Ct +DtΘt)x(t).
(4.1)

With the current notations, these equations can be written as

x(t+ 1) = (Inx 0nx×nz)∆t

(
Inx

Θt

)
x(t) + w(t),

z(t) = (0nz×nx Inz)∆t

(
Inx

Θt

)
x(t),

(4.2)

where ∆t is the unknown matrix of dimensions (nx + nz)× (nx + nu) and Θt is the controller
parameter matrix of dimensions (nu × nx). The dual system equations are

xd(t+ 1) =

(
I

ΘN−1−t

)T

∆T
N−1−t

(
I

0

)
xd(t)

+

(
I

ΘN−1−t

)T

∆T
N−1−t

(
0
I

)
wd(t),

zd(t) = xd(t).

(4.3)

Also, we consider the so-called augmented system with additional artificial input w∆(t) ∈ Rnx+nu

and output z∆(t) ∈ Rnx+nz :

xa(t+ 1) =

(
I

ΘN−1−t

)T

w∆(t),

za(t) = xa(t), z∆(t) =

(
I

0

)
xa(t) +

(
0
I

)
wa(t).

(4.4)

In these equations, xa(t) ∈ Rnx , wa(t) ∈ Rnz , and za(t) ∈ Rnx are the state vector, a disturbance,
and the performance output, respectively. Assume that for all t > 0, the additional input w∆(t) in
system (4.4) satisfies the inequalities

(
w∆(t)

z∆(t)

)T

Ψ(k)(N − 1− t)

(
w∆(t)

z∆(t)

)
6 0, k = 1, 2, (4.5)

where the matrices Ψ(k)(t) are given by (2.8) and (2.15). Let W∆ denote the set of all such
inputs w∆(t). For system (4.4), (4.5), we define the damping level of the disturbances with weight
matrices S > 0 and R > 0 by

γ̂g∞(S,R) = sup
w∆∈W∆

sup
xa(0), wa

(
‖za‖

2
[0, N−1] + xTa (N)Rxa(N)

xTa (0)S
−1xa(0) + ‖wa‖2[0, N−1]

)1/2

.
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Note that for w∆(t) = ∆T
N−1−tz∆(t), equations (4.4) coincide with equations (4.3) and

(
w∆(t)

z∆(t)

)T

Ψ(k)(N − 1− t)

(
w∆(t)

z∆(t)

)

= zT∆(t)

(
∆T

N−1−t

I

)T

Ψ(k)(N − 1− t)

(
∆T

N−1−t

I

)
z∆(t) 6 0,

where k = 1, 2. Thus, w∆(t) = ∆T
N−1−tz∆(t) ∈ W∆ and, consequently, for all ∆[0,N−1] ∈ ∆[0,N−1]

system (4.3) is “immersed” in the augmented system (4.4), (4.5); moreover, the generalized H∞

norm with the weight matrices S > 0 and R > 0 of the dual system (4.3) does not exceed the
damping level γ̂g∞(S,R) of the disturbances. Now we formulate and prove the main result.

Theorem 4.1. The upper bound of the generalized H∞ norm with weight matrices R and S of

the uncertain system (2.1) under the controller u(t) = Θtx(t) with ΘN−1−t = Qt+1P
−1
t+1, t = 0, . . . ,

N − 1, satisfies the inequality γg∞(Θ[0,N−1];R,S) 6 γ if the LMIs




−Pt+1 ⋆ ⋆
(

Pt+1

Qt+1

)
−

2∑

k=1

µ
(k)
t Ψ

(k)
11 ⋆

0 −
2∑

k=1

µ
(k)
t Ψ

(k)
21 −

2∑

k=1

µ
(k)
t Ψ

(k)
22 +Kt




6 0,

Kt =

(
I − Pt ⋆

0 −γ2I

)
, PN = R, P0 6 γ2S−1,

(4.6)

are solvable with respect to Pt = PT
t > 0, Qt, and µ

(k)
t > 0, where k = 1, 2. In these inequalities,

Ψ
(k)
ij = Ψ

(k)
ij (N − 1− t), i, j = 1, 2, indicate the corresponding blocks of the matrices Ψ(k)(N − 1− t)

and the matrices Ψ(k)(t) are given by (2.8) and (2.15).

Proof of Theorem 4.1. By Lemma 3.3, for each ∆[0,N−1], the generalized H∞ norm with weight
matrices R > 0 and S > 0 of the primal system coincides with the generalized H∞ norm with the
weight matrices S > 0 and R > 0 of the dual system (4.3). For ∆[0,N−1] ∈ ∆[0,N−1], system (4.3)
is immersed in the augmented system (4.4), (4.5); hence, its norm specified above does not exceed
the damping level γ̂g∞(S,R) of the disturbances of system (4.4), (4.5). In turn, γ̂g∞(S,R) 6 γ if
there exists a function Vt(xa) = xTa Ptxa with Pt > 0, P0 6 γ2S−1, and PN = R such that

△Vt + |za(t)|
2 − γ2|wa(t)|

2
6 0 (4.7)

along the trajectories of the augmented system for all t = 0, . . . , N − 1 and all w∆(t) ∈ W∆ satisfy-
ing inequalities (4.5). This fact is easily verified by summing inequalities (4.7) for t = 0, . . . , N − 1
considering the initial and terminal conditions for the matrix Pt.

According to the S-procedure, inequalities (4.7) given (4.5) hold if

△Vt + |za(t)|
2 − γ2|wa(t)|

2 −
2∑

k=1

µ
(k)
t

(
w∆(t)

z∆(t)

)T

Ψ(k)(N − 1− t)

(
w∆(t)

z∆(t)

)
6 0 (4.8)

for all xa(t), wa(t), and w∆(t) and some µ
(k)
t > 0, k = 1, 2, where za(t) = xa(t) and z∆(t) =

col (xa(t), wa(t)). Thus, under inequalities (4.8), we have γg∞(Θ[0,N−1];R,S) 6 γ̂g∞(S,R) 6 γ.
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Let (4.8) be written as the LMIs




(
I

ΘN−1−t

)
Pt+1

(
I

ΘN−1−t

)T

⋆

0 Kt


−

2∑

k=1

µ
(k)
t Ψ(k)(N − 1− t) 6 0.

Then, introducing the new matrix variables Qt+1 = ΘN−1−tPt+1, t = 0, . . . , N − 1, and applying
the Schur complement lemma, we finally arrive at inequalities (4.6). The proof of Theorem 4.1 is
complete.

Remark 9. By [17, Theorem 4.1], the S-procedure can be lossless under two quadratic constraints

if, as applied to the problem under consideration, for some α
(1)
t and α

(2)
t we have α

(1)
t Ψ(1)(t)+

α
(2)
t Ψ(2)(t) > 0 for all t. (This fact is directly verified by solving these LMIs with respect to α

(1)
t

and α
(2)
t .) In this case, the hypotheses of Theorem 4.1 are necessary and sufficient for satisfying

the inequality γ̂g∞(S,R) 6 γ.

Remark 10. For controller design based on only experimental data or only a priori information,
due to the losslessness of the S-procedure with one constraint, the hypotheses of Theorem 4.1 are
sufficient and also necessary for satisfying the inequality γ̂g∞(S,R) 6 γ.

Remark 11. If w(t) = Bv, tv(t) in equation (4.1) (see Remark 1), the performance output of the
augmented system will become za(t) = BT

v, txa(t). As a result, when calculating the upper bound of
the generalized H∞ norm of the uncertain system (4.1) with the disturbance v(t), the term I in the
fourth block row and the fourth block column of inequalities (4.6) should be replaced by Bv, tB

T
v, t.

Remark 12. For the time-invariant system (see Remark 3), the upper bound of the generalized
H∞ norm with the initial state weight matrix R satisfies the inequality γg∞(Θ;R) 6 γ under the
controller u(t) = Θx(t), where Θ = QP−1, if the stationary first LMI in (4.6) is solvable with
respect to P = PT > R, Q, and µ(k) > 0, k = 1, 2. In the case L = 1, this result agrees with the
one established in [14].

Let γ∗g∞, γ
(a)
g∞, and γ

(p)
g∞ denote the minimum upper bounds of the generalized H∞ norm of the

closed loop system that can be reached under the controllers designed using the experimental data
jointly with the a priori information, only the a priori information, and only the experimental data,
respectively (Theorem 4.1). These are the minimum values of γ for which inequalities (4.6) are

solvable for µ
(k)
t > 0, k = 1, 2, for µ

(1)
t ≡ 0 and µ

(2)
t > 0, and for µ

(1)
t > 0 and µ

(2)
t ≡ 0, respectively.

They will be called the guaranteed estimates. Theorem 4.1 directly implies the inequality

γ∗g∞ 6 min
{
γ(a)g∞, γ(p)g∞

}
,

which explains the advantage of the robust controllers based on both a priori information and
experimental data over those based on only a priori information or only experimental data. On the
one hand, given rough a priori information (i.e., when the radii ρt of the matrix spheres in (2.13)

are quite large and, accordingly, γ
(a)
g∞ takes a high value), the index γ∗g∞ may turn out to be small

if the measurement noises are not very significant (i.e., if the matrix ellipsoids ∆
(p)
t are small).

On the other hand, if the measurement noises turn out to be significant and, accordingly, γ
(p)
g∞ is

large (furthermore, if the rank condition fails and the information matrix is singular, making the

matrix ellipsoids ∆
(a)
t unbounded), then γ∗g∞ can nevertheless become small due to the smallness

of the radii of the matrix spheres when using the a priori information. These conclusions will be
confirmed by the simulation results in Section 5.
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4.2. γ0 Control on a Finite Horizon

Now, it is required to design a controller based on experimental and a priori information that
minimizes the γ0 norm. As before, the experimental data are assumed to satisfy the relations (2.4).
In contrast to the generalized H∞ control design presented above, in this case, equation (4.2) does
not contain the disturbance w(t), the dual system equation (4.3) does not contain the performance
output zd(t) (see Remark 5), and the augmented system equation (4.4) does not contain the perfor-
mance output, i.e., za(t) ≡ 0. As a result, inequalities (4.8) exclude the term |za(t)|

2. Consequently,
in the final analysis, the upper bound of the γ0 norm of the uncertain system (2.1) does not exceed
γ under inequalities (4.6) without the term I in their fourth block row and fourth block column.
Also, note that R = 0 for the standard H∞ control design using Theorem 4.1.

4.3. Control of the Maximum Deviation of the Terminal State

Consider controller design based on both experimental data and a priori information to minimize
the maximum deviation γ∗N (Θ[0,N−1];R,S) (2.19) of the terminal state of the uncertain system

x(t+ 1) = Atx(t) +Btu(t) + w(t), x(0) = x0. (4.9)

Since there is no performance output in this system, the experimental data matrices satisfy the
equation

Φt+1 = ∆
(real)
t Φ̂t +Wt, (4.10)

where ∆
(real)
t = (A

(real)
t B

(real)
t ), the other matrices are given by (2.2), and WtW

T
t 6 Ωt. The ma-

trices ∆t consistent with the experimental data are given by inequalities (2.7) in which

Ψ(1)(t) =




Φ̂tΦ̂
T
t | ∗

− − − −−− −−−

−Φt+1Φ̂
T
t | Φt+1Φ

T
t+1 − Ωt


 . (4.11)

We denote by Ψ
(1)
ij (t), i, j = 1, 2, the blocks of this matrix. The matrices ∆t consistent with the a

priori information are given by inequalities (2.14) in which ∆∗
t = (A∗

t B∗
t ). The primal system (4.9)

is described by the equation

x(t+ 1) = ∆t

(
Inx

Θt

)
x(t) + w(t); (4.12)

the dual system, by the equation

xd(t+ 1) =

(
I

ΘN−1−t

)T

∆T
N−1−txd(t),

zd(t) = xd(t);

(4.13)

the augmented system, by the equation

xa(t+ 1) =

(
I

ΘN−1−t

)T

w∆(t),

za(t) = xa(t), z∆(t) = xa(t),

(4.14)

where w∆ ∈ W∆. By analogy with the proof of Theorem 4.1, we arrive at inequalities (4.8) in
which wa(t) ≡ 0 and z∆(t) = xa(t). Representing them in matrix form yields the LMIs (4.6), which
determine the upper bound for the maximum deviation of the terminal state of the uncertain system
with the controller u(t) = Θtx(t), where ΘN−1−t = Qt+1P

−1
t+1, t = 0, . . . , N − 1.
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5. AN ILLUSTRATIVE EXAMPLE

This section provides the results of several experiments with a system obtained by discretizing
the Mathieu equation

d2 ϕ

d τ2
+ ω2

0(1 + ε sinωτ)ϕ = u+ v

with a step h. Recall that this equation describes the oscillations of a parametric oscillator. The
equation can be written as the system

x(t+ 1) =

(
1 h

−ω2
0[1 + ε sin(ωth)]h 1

)
x(t) +

(
0
h

)
u(t) +

(
0
h

)
v(t),

z(t) =

(
1 0
0 0

)
x(t) +

(
0
1

)
u(t), t = 0, . . . , N − 1,

(5.1)

where x(t) = col (ϕ(t h), ϕ̇(t h)), |v(t h)| 6 dv, ω0 = π, ω = 2π, ε = 0.01, and h = 0.2. The matrices

of these equations are unknown and are blocks of the matrix ∆
(real)
t for each t. Thus, at each time

instant, the system contains 12 unknown parameters, resulting in 120 unknown parameters on the

horizon N = 10. As the center of the matrix sphere ∆
(a)
t we take the matrix ∆∗

t , which corresponds
to a linear oscillator, i.e., to system (5.1) with ε = 0. In the experiment, the initial conditions and
the control vector components were chosen randomly on the interval [−1, 1], and the disturbance
was also random on the interval [−d, d]. The weight matrices of the initial and terminal states were
set equal to R = 0.1I and S = 0.05I, respectively.

In Fig. 2, the solid curve corresponds to the square of the guaranteed generalized H∞ norm γ∗g∞
depending on the disturbance level d, obtained from the experimental data jointly with the a
priori information on the horizon N = 10 for three experiments L = 3 and the radii of the a priori

uncertainty ρt ≡ 0.02. The dots indicate the straight line γ
(a)2
g∞ = 0.37 corresponding to the square

of the guaranteed generalized H∞ norm when using only the a priori information. (In other
words, this value of the performance index is achieved with traditional robust control.) The dotted

curve corresponds to the square of the generalized H∞ norm γreal = γg∞(∆
(real)
[0,N−1],Θ

∗
[0,N−1]) of

the closed loop system consisting of the real object with the parameter matrices ∆
(real)
[0,N−1] (if they

were known) and the feedback loops with the parameter matrices Θ∗
[0,N−1] corresponding to γ∗g∞.

Fig. 2. The guaranteed generalized H∞ norm and generalized H∞ norm of a real object controlled based on
experimental data and a priori information depending on the disturbance level.
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Fig. 3. The components of the control parameter vector Θ∗

t
as time-varying functions.

Fig. 4. The guaranteed generalized H∞ norms as functions of the disturbance level when using different types
of information.

The figure demonstrates well how much γ∗2g∞ (depending on d) is less than γ
(a)2
g∞ , how much γ∗2g∞

exceeds γ2real, and how much the latter, in turn, exceeds the minimum value of the square of
the generalized H∞ norm of the real object under the optimal controller for the completely known
object, equal to γ2 = 0.202. The growing curve γ∗g∞ with increasing d in the experiment is explained

by a corresponding increase in the sizes of the matrix ellipsoids ∆
(p)
t . As one example, Fig. 3 shows

the components of the control parameter vector Θ∗
t depending on time for d = 0.48.

Figure 4 presents the graphs of the squares of the guaranteed generalized H∞ norms when using
the experimental data jointly with the a priori information (the solid curve γ∗g∞), only the experi-

mental data (the dash-and-dot curve γ
(p)
g∞), and only the a priori information (the dashed line γ

(a)
g∞).

For each disturbance level in the experiments, the first two norms were calculated under the same
experimental data. Clearly, starting from a certain disturbance level in the experiments, γ∗g∞ is

significantly less than γ
(p)
g∞ and always does not exceed γ

(a)
g∞, which was calculated for ρt ≡ 0.02.

With the controller based on only the experimental data (no a priori information used), high mea-

surement errors increase the size of the matrix ellipsoids ∆
(p)
t , and the guaranteed damping level

of the disturbances turns out to be quite large.
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Fig. 5. The guaranteed generalized H∞ norms when using experimental data jointly with a priori information
and only experimental data (no solution exists based on only a priori information).

Fig. 6. The guaranteed generalized H∞ norms as functions of the disturbance level for different numbers of
experiments.

Figure 5 shows the graphs of the squares of the guaranteed generalized H∞ norms when using
the experimental data jointly with the a priori information (the solid curve γ∗g∞) and only the

experimental data (the dash-and-dot curve γ
(p)
g∞); the only difference from the experiments in Fig. 4

is the radii of the a priori information uncertainty ρt ≡ 0.6, for which the LMIs (4.6) with µ
(1)
t ≡ 0

and µ
(2)
t > 0 are unsolvable. According to this figure, in the case of insufficient a priori information

(when the uncertainty domain has to be chosen large enough and the guaranteed value of the
performance index in this domain is great or even ceases to exist), using this information jointly
with the experimental data still allows one to design systems with a better performance than when
using only the experimental data.

The graphs in Fig. 6 are the squares of the guaranteed generalized H∞ norms when using
experimental data and a priori information depending on the disturbance level d for different
numbers of experiments: L = 1 (the dash-and-dot curve), L = 3 (the solid curve), and L = 10
(the dotted curve). This figure allows making several conclusions as follows. First, even with a
single experiment, when the rank condition obviously fails and the system is nonidentifiable, the
guaranteed damping level of the disturbances is less than that obtained under robust control based
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Fig. 7. The guaranteed generalized H∞ norms as functions of the disturbance level for different radii of matrix
spheres in a priori information.

on the a priori information. Second, if the measurement errors are not very high, then increasing
the number of experiments reduces the achieved guaranteed damping level of the disturbances.
Third, if the measurement errors are sufficiently high, then this level almost does not depend on

the number of experiments and approximately equals γ
(a)2
g∞ = 0.37.

Finally, Fig. 7 shows the graphs of the squares of the guaranteed generalized H∞ norms when
using the experimental data and a priori information depending on the disturbance level d for
different radii of the matrix spheres in the a priori information. As the radius increases, the set
of the matrices ∆t consistent with the a priori information expands, and the guaranteed damping
level of the disturbances in the uncertain system grows accordingly.

6. CONCLUSIONS

This paper has theoretically substantiated and experimentally validated a new optimal control
design method based on experimental data and a priori information for linear time-varying ob-
jects on a finite horizon and linear time-invariant objects on an infinite horizon. In this method,
the goal of control is to minimize the generalized H∞ norm of the closed-loop uncertain system,
which particularly characterizes the damping levels of exogenous and/or initial disturbances, the
maximum deviation of the terminal state, and (in the absence of any exogenous disturbance) the
maximum value of a quadratic functional of the state and control variables under uncertain initial
conditions. The performance of the designed controllers has been studied depending on various
factors: the disturbance level in experiments, the number of experiments, the radii of the matrix
spheres in a priori information, etc. As has been shown, the method remains effective even under a
small amount of experimental data, when neither the persistent excitation condition nor the rank
condition holds.
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APPENDIX

Proof of Lemma 2.1. We write inequality (2.6) as

∆tΦ̂tΦ̂
T
t ∆

T
t − Φ̃t+1Φ̂

T
t ∆

T
t −∆tΦ̂tΦ̃

T
t+1 + Φ̃t+1Φ̃

T
t+1 − Ω̂t 6 0.
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With the change of variables, it becomes

∆̂
(1)
t Σ2∆̂

(1)T
t − Φ̃t+1Φ̂

(1)T
t ∆̂

(1)T
t − ∆̂

(1)
t Φ̂

(1)
t Φ̃T

t+1 + Φ̃t+1Φ̃
T
t+1 − Ω̂t 6 0.

Completing the square yields

[
∆̂

(1)
t − Φ̃t+1Φ̂

(1)T
t Σ−2

]
Σ2
[
∆̂

(1)
t − Φ̃t+1Φ̂

(1)T
t Σ−2

]T
6 Γt,

where

Γt = Ω̂t + Φ̃t+1

[
Φ̂
(1)T
t Σ−2Φ̂

(1)
t − I

]
Φ̃T
t+1.

Due to the expression (2.10) for Φ̃t+1 and Φ̂
(1)
t Φ̂

(1)T
t = Σ2, it follows that Γt = Ω̂t > 0. Con-

sider the matrix norm of the residual, i.e., the function tr (Φ̃t+1 − ∆̂
(1)
t Φ̂

(1)
t )T(Φ̃t+1 − ∆̂

(1)
t Φ̂

(1)
t ).

Equating its gradient with respect to ∆̂
(1)
t to zero, −2Φ̃t+1Φ̂

(1)T
t + 2∆̂

(1)
t Φ̂

(1)
t Φ̂

(1)T
t = 0, we finally

get the least-squares estimate ∆
(LS)(1)
t of the unknown matrix ∆

(real)(1)
t in (2.10) in the form

∆̂
(LS)(1)
t = Φ̃t+1Φ̂

(1)T
t Σ−2.

Proof of Lemma 3.2. In view of equations (3.1) and (3.5), we have

xT(t+ 1)x̂(t+ 1)− xT(t)x̂(t) = vT(t)ẑ(t)− zT(t)v̂(t).

Summing these equations over t = 0, . . . , N − 1 yields

xT(N)S[S−1x̂(N)]+ < z, v̂ >l2= xT(0)R−1[Rx̂(0)]+ < v, ẑ >l2 .

Thus,

< Γg∞(x(0), v), (S−1x̂(N), v̂) >Ξ2=< (x(0), v),Γ∗
g∞(S−1x̂(N), v̂) >Ξ1 ,

and the conclusion follows.

Proof of Lemma 3.3. By the equality of the norms of adjoint operators and Lemma 3.2,
we have ‖Γg∞‖ = ‖Γ∗

g∞‖, where the adjoint operator norm is given by (3.4). With the
time change t = N − 1− τ in (3.5), we denote x̂(N − τ) = xd(τ), v̂(N − 1− τ) = vd(τ), and
ẑ(N − 1− τ) = zd(τ), arriving at equations (3.6) with τ replaced by t. In this case, the opera-
tor Γ∗

g∞ can be represented as

Γ∗
g∞ : (S−1xd(0), vd(t)) → (Rxd(N), zd(t))

and

‖Γ∗
g∞‖ = sup

xd(0), vd

[
‖zd‖

2
[0, N−1] + xTd (N)Rxd(N)

xTd (0)S
−1xd(0) + ‖vd‖

2
[0, N−1]

]1/2
,

which is the desired result.
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